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Causal inferences about the effect of an exposure on an outcome may be biased by errors in the measurement of
either the exposure or the outcome. Measurement errors of exposure and outcome can be classified into 4 types:
independent nondifferential, dependent nondifferential, independent differential, and dependent differential. Here
the authors describe how causal diagrams can be used to represent these 4 types of measurement bias and
discuss some problems that arise when using measured exposure variables (e.g., body mass index) to make
inferences about the causal effects of unmeasured constructs (e.g., “adiposity”). The authors conclude that causal
diagrams need to be used to represent biases arising not only from confounding and selection but also from

measurement.

bias (epidemiology); body mass index; causality; confounding factors (epidemiology)

Abbreviation: BMI, body mass index.

Bias due to the measurement of study variables has
received little attention in the epidemiologic literature on
causal diagrams. Like other authors (1-4), Shahar (5) uses
causal diagrams to explore inferential problems related to
measurement. He concludes that body mass index (BMI;
weight (kg)/height (m)z) has a fundamental shortcoming
for causal inference: It cannot possibly affect the outcome,
whatever the outcome. While we agree with this conclusion,
we believe it is too restrictive. Why leave it at BMI? The
same could be said of most variables measured in observa-
tional studies: They are often known not to have a causal
effect on the outcome even before the data are collected, yet
we spend much time and effort conducting observational
studies. To explain this apparent paradox, we will describe
causal diagrams that explicitly incorporate measurement
error in (non-time-varying) exposures and outcomes. We
will then return to the BMI example.

Consider an observational study designed to estimate the
effect of exposure A (say, statin use) on outcome Y (say, liver
toxicity). For simplicity, assume no confounding (6) or
selection bias (7). In general, the exposure A will be mea-
sured imperfectly. Suppose that information on statin use is
obtained by medical record abstraction. There are several

reasons why the measured variable ““statin use,” which we
will refer to as A*, will not equal the true statin use A for
a given individual. For example, the abstractor may make
a mistake when transcribing the data, the physician may
forget to write down that the patient was prescribed a statin,
or the patient may not take the prescribed treatment. Thus,
the variable in our analysis data set will not reflect true statin
use A but rather the measured statin use A*. The causal
directed acyclic graph (8—10) in Figure 1 depicts the vari-
ables A, A*, and Y. The true exposure A affects both the
outcome Y and the measured exposure A*. The causal dia-
gram also includes the node Uy, to represent all factors other
than A that determine the value of A*. We refer to U, as the
measurement error for A. Note that U, is typically omitted
from causal diagrams used to discuss confounding (because
U, is not a common cause of 2 variables) or selection bias
(because Uy is not conditioned on). Inclusion of Uy is nec-
essary to discuss biases due to measurement error. (For sim-
plicity, the diagram does not include all determinants of the
variables A and Y))

Figure 1 illustrates our assertion that measured exposures
do not generally affect outcomes in observational studies.
Clearly, A* has no direct or indirect causal effect on the
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Figure 1. A causal directed acyclic graph representing a true expo-
sure A, its measured version A*, and its measurement error Uy,.

outcome Y. However, A* is the only variable available to the
investigator for estimating the effect of A on Y. The psycho-
logical literature sometimes refers to A as the ‘““construct”
and to A* as the “measure” or “indicator.”” The challenge in
observational disciplines is to make inferences about the
unobserved construct (e.g., intelligence, statin use) by using
data on the observed measure (e.g., intelligence quotient
computed from questionnaire responses or estimated by
factor analysis; information on statin use from medical rec-
ords). The assumption implicit in many epidemiologic anal-
yses is that the association between A* and Y approximates
the association between A and Y. Unlike the situation in
observational studies, in experiments one can generally
argue that A* does have a causal effect on the outcome.
For example, consider a double-blind placebo-controlled
randomized clinical trial of statin use in which A* is an
indicator of assignment to statin therapy and A is an indica-
tor of actual statin use. The arrow from A to A* in Figure 1
would be reversed, and A* would have an indirect causal
effect on Y mediated through A.

Besides the exposure A, the outcome Y may also be mea-
sured with error. The causal diagram in Figure 2, part A,
includes the nodes Y* and Uy, defined as the measured out-
come and its measurement error. According to this graph,
the errors for the exposure and the outcome are independent
(11)—that is, iUy Uy) = flUy) flUys), where f(-) is the
probability density function. Independent errors might arise
if, for example, data on both statin use A and liver toxicity Y
were obtained from electronic medical records in which
data entry errors occurred haphazardly. In other settings,
however, the measurement errors for exposure and outcome
may be dependent, as shown in Figure 2, part B. For exam-
ple, dependent measurement errors might occur if the in-
formation on both A and Y were obtained retrospectively by
phone interview and if a subject’s ability to recall her med-
ical history (U,y) affected the measurement of both A and Y.

Both part A and part B of Figure 2 represent settings with
nondifferential measurement errors (11): The error for the
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Figure 2. A structural classification of measurement error.

exposure is independent of the true value of the outcome—
that is, f{U4|Y) = f(iUs)—and the error for the outcome is
independent of the true value of the exposure—that is,
f(UYA) = f(Uy). Figure 2, part C, shows an example of
independent but differential measurement error in which
the true value of the outcome affects the measurement of
the exposure (i.e., an arrow from Y to U,). This type of
measurement error might occur if the outcome Y were de-
mentia rather than liver toxicity and statin use A were ascer-
tained by interviewing study participants (because the
presence of dementia affects the ability to recall A). A bias
with the same structure might arise when estimating the
association between blood lipids A and cancer Y if blood
lipid levels are measured after cancer is present (because
cancer affects the measured levels of blood lipids), or
between alcohol use during pregnancy and birth defects
when alcohol intake is ascertained by recall after delivery
(because recall may be affected by the outcome of the preg-
nancy). Figure 2, part D, shows an example of independent
but differential measurement error in which the true value of
the exposure affects the measurement of the outcome (i.e.,
an arrow from A to Uy). This type of measurement error
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might occur if physicians, suspecting that statin use A causes
liver toxicity ¥, monitored patients receiving a statin more
closely than other patients. Parts E and F of Figure 2 depict
measurement errors that are both dependent and differential,
which may result from a combination of the settings
described above.

In summary, Figure 2 depicts 4 types of measurement
error: 1) independent nondifferential (part A), 2) dependent
nondifferential (part B), 3) independent differential (parts C
and D), and 4) dependent differential (parts E and F) (1).
The description of measurement error in a causal diagram
requires detailed knowledge of study design and procedures
(2). It is important to keep in mind that causal diagrams do
not encode quantitative information, and therefore they can
be used to describe the structure of the bias but not its
magnitude.

Epidemiologists study the association between measured
exposures like A* and health outcomes like Y* even though
they are aware that the measured exposure A* may not have
a causal effect on the outcome. Studying the association
between a measured exposure and an outcome in observa-
tional studies is an indirect way of assessing the effect of the
true exposure on the true outcome. In the presence of de-
pendent or differential measurement errors, this strategy is
potentially biased because (as is easily concluded by apply-
ing the rules of d-separation (9)) the measured exposure A*
is expected to be associated with the measured outcome Y*
even under the null hypothesis of no effect of the true
exposure A on the true outcome Y. We refer to the difference
(in expectation) between the A-Y and A*-Y* associations as
measurement bias or information bias, because the differ-
ence is due to the presence of measurement error.

In general, measurement error will result in bias. A nota-
ble exception is the setting in which A and Y are unassoci-
ated and the measurement error is independent and
nondifferential: If the arrow from A to Y did not exist in part
A of Figure 2, then both the A-Y association and the A*-Y*
association would be null. In all other circumstances, mea-
surement bias may result in an A*-Y* association that is
either further from or closer to the null than the A-Y associ-
ation. Worse, measurement bias may result in A*-Y* and A-Y
trends that point in opposite directions. This trend reversal
may occur even under the independent and nondifferential
measurement error structure of Figure 2, part A (12), when
the mean of A* is a nonmonotonic function of A (13). A more
general theory on the direction of associations in causal
diagrams has been recently proposed by VanderWeele and
Robins (14).

Let us now return to the motivating example: the effect of
BMI on a health outcome Y (5). It is widely accepted that
some physiologic parameters related to body weight affect
the risk of developing certain health outcomes. An exact
characterization of these physiologic parameters is difficult,
and thus they are sometimes (5) collectively referred to as
““adiposity.” A key issue is how to provide a sharp opera-
tional definition of adiposity for epidemiologic research.
Body weight is not, by itself, a good candidate for summa-
rizing adiposity: A person weighing 80 kg may be consid-
ered obese if shorter than 1.60 m or underweight if taller
than 2.05 m. It is not our goal here to summarize the vast
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Figure 3. A simplistic causal directed acyclic graph for the associ-
ation between body mass index (BMI) and a health outcome Y.

literature on operational definitions of adiposity. Rather, we
will focus on BMI, a deterministic function of measured
height and weight, which is commonly used as a measure-
ment of adiposity. The causal diagram in Figure 3 depicts, in
addition to the construct adiposity A, the variables true body
weight W, height H, and outcome Y, their corresponding
measured versions W*, H*, and Y*; and their corresponding
measurement errors Uy, Uy, and Uy Adiposity is depicted
as a function of true weight W and height H, and the com-
puted BMI* is depicted as a node with arrows only from
both measured weight W#* and height H*. This causal dia-
gram is essentially equivalent to that proposed by Shahar
(5), except that we allow for dependent measurement errors
Uy for weight and height.

The causal diagram in Figure 3 is of course a gross, and
likely incorrect, oversimplification of a complex issue.
However, this graph suffices to show that the computed
BMI*#, like any other measured exposure, cannot possibly
have a causal effect on the outcome Y. Additionally, under
this causal diagram, the computed BMI* is associated with
the measured outcome Y* only if adiposity A has a causal
effect on the true outcome Y (i.e., if there is an arrow from
A to Y). Therefore, one could argue that endowing the asso-
ciation between computed BMI* and measured Y* with an
approximate causal interpretation as the effect of adiposity
on Yis justified. This may be an implicit justification for the
use of BMI in etiologic research. Note that this argument
requires that measurement errors Uy and Uy be neither
dependent nor differential. From this standpoint, BMI is
no different from any other epidemiologic exposure.

There are other problems with BMI as an etiologic expo-
sure that we do not discuss here: 1) BMI may not be the
most appropriate characterization of adiposity (e.g., kg/m*>
might be a better choice, and fat tissue distribution may also
be relevant); 2) BMI may need to be considered in conjunc-
tion with height (15); 3) effect-measure modification by
BMI (or by weight W) is hard to interpret mechanistically
if the causally relevant variable is the unobserved variable
adiposity A; and 4) confounding adjustment is not straight-
forward for time-varying variables like BMI, especially
when they are measured with error (16—-18). Finally, the
consistency assumption is particularly problematic when
the goal is making causal inferences about the effects of
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BMI (or other functions of physiologic parameters) (19, 20).
Note that lack of consistency does not mean that an arrow
from A to Y cannot exist, as suggested by Shahar (5), but
rather that hypothetical interventions on A are not well-
defined, which may render causal inferences too vague to
be useful for clinical or public health purposes.

In conclusion, exposures measured in observational stud-
ies may not have any effect on the outcome even if the
underlying true exposures do. Further, the mere act of mea-
suring variables (like that of selecting subjects) may in-
troduce bias. Realistic causal diagrams of observational
studies need to simultaneously represent biases arising from
confounding, selection, and measurement.
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